Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convectiondominated flows

نویسندگان

  • Krzysztof J. Fidkowski
  • K. J. FIDKOWSKI
چکیده

We study practical strategies for estimating numerical errors in scalar outputs calculated from unsteady simulations of convection-dominated flows, including those governed by the compressible Navier–Stokes equations. The discretization is a discontinuous Galerkin finite element method in space and time on static spatial meshes. Time-integral quantities are considered for scalar outputs and these are shown to superconverge with temporal refinement. Output error estimates are calculated using the adjoint-weighted residual method, where the unsteady adjoint solution is obtained using a discrete approach with an iterative solver. We investigate the accuracy versus computational cost trade-off for various approximations of the fine-space adjoint and find that exact adjoint solutions are accurate but expensive. To reduce the cost, we propose a local temporal reconstruction that takes advantage of superconvergence properties at Radau points, and a spatial reconstruction based on nearest-neighbor elements. This inexact adjoint yields output error estimates at a computational cost of less than 2.5 times that of the forward problem for the cases tested. The calculated error estimates account for numerical error arising from both the spatial and temporal discretizations, and we present a method for identifying the percentage contributions of each discretization to the output error. Copyright 2011 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Discontinuous Galerkin Method on Mapped Deforming Domains

In this paper we present a hybridized discontinuous Galerkin (HDG) discretization for unsteady simulations of convection-dominated flows on mapped deforming domains. Mesh deformation is achieved through an arbitrary Lagrangian-Eulerian transformation with an analytical mapping. We present details of this transformation applied to the HDG system of equations, with focus on the auxiliary gradient...

متن کامل

Error Estimation and Adaptation in Hybridized Discontinous Galerkin Methods

This paper presents an output-based error estimation and adaptation strategy for hybridized discontinuous Galerkin discretizations of firstand second-order systems of conservation laws. A discrete adjoint solution is obtained by a Schurcomplement solver similar to that used in the primal problem. An error estimate is obtained by computing the adjoint on an enriched solution space that consists ...

متن کامل

An Output-Based Adaptive Hybridized Discontinuous Galerkin Method on Deforming Domains

In this paper we present an output-based adaptive method for unsteady simulations of convection-dominated flows on deformable domains. The target discretization is the hybridized discontinuous Galerkin method (HDG), which offers potential computational savings at high order compared to the discontinuous Galerkin (DG) method. Mesh deformation is achieved through an arbitrary Lagrangian-Eulerian ...

متن کامل

Output-based space-time mesh adaptation for the compressible Navier-Stokes equations

This paper presents an output-based adaptive algorithm for unsteady simulations of convectiondominated flows. A space-time discontinuous Galerkin discretization is used in which the spatial meshes remain static in both position and resolution, and in which all elements advance by the same time step. Error estimates are computed using an adjoint-weighted residual, where the discrete adjoint is c...

متن کامل

Output-Based Space-Time Mesh Adaptation for Unsteady Aerodynamics

An adjoint-based output error estimation algorithm is presented for unsteady problems discretized on static meshes with a space-time discontinuous Galerkin finite element method. An approximate factorization technique is used to solve both the forward and the discrete adjoint problems. A space-time anisotropy measure based on projection of the adjoint solution is used to attribute the error to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011